

MAC Protocol for Mobile Ad Hoc Networks (MANETs)

C. SRIDEVI^a, HARI^b

^aElectronics&Communication Engineering,St.Martin's Engineering College,Dhulapally,Secundrabad, India

E.Mail:csridevice@smec.ac.in

^bSoftware Engineer, APPLAUD solutions,Hyderabad,Telangna, India

E.Mail:harishankar.gajula@gmail.com

Article Info

Received: 06-01-2025

Revised: 12 -02-2025

Accepted: 22-02-2025

Published:07/03/2025

Abstract

Mobile Ad Hoc Networks (MANETs) are dynamic, self-configuring networks formed by a collection of mobile devices without any fixed infrastructure. One of the critical challenges in MANETs is the design of an efficient Medium Access Control (MAC) protocol to manage access to the shared communication medium. This paper provides an overview of MAC protocols designed for MANETs, including their features, advantages, and limitations. We also analyze performance metrics and propose enhancements to optimize protocol performance.

1. Introduction

Mobile Ad Hoc Networks (MANETs) are decentralized wireless networks where nodes communicate directly without relying on fixed infrastructure or centralized administration. MANETs are widely used in disaster recovery, military applications, and IoT. However, their dynamic topology, limited bandwidth, and energy constraints pose significant challenges.

A critical component of MANETs is the Medium Access Control (MAC) protocol, which regulates how nodes access the shared wireless medium. An efficient MAC protocol ensures fairness, reduces collisions, and improves network throughput. This paper examines various MAC protocols, focusing on their applicability to MANETs.

2. Characteristics of MANETs

- **Dynamic Topology:** Nodes frequently join or leave the network, causing topology changes.
- **Resource Constraints:** Devices are limited in terms of battery life, processing power, and memory.
- **Distributed Control:** Decisions are made locally without a central authority.
- **Multi-hop Communication:** Nodes act as both hosts and routers to forward packets.

These characteristics necessitate the development of specialized MAC protocols.

3. Classification of MAC Protocols

MAC protocols for MANETs can be broadly classified into three categories:

3.1 Contention-Based Protocols

Contention-based protocols allow nodes to compete for access to the medium. Examples include:

- **Carrier Sense Multiple Access (CSMA):** Nodes sense the medium before transmitting to avoid collisions. However, it suffers from the hidden terminal problem.
- **MACA and MACAW:** These protocols use control packets, such as RTS (Request to Send) and CTS (Clear to Send), to mitigate the hidden terminal issue.

3.2 Scheduled-Based Protocols

Scheduled-based protocols allocate resources deterministically, reducing collisions. Examples include:

- **Time Division Multiple Access (TDMA):** Divides time into slots assigned to nodes, ensuring collision-free communication.
- **Polling-based Protocols:** A central node polls other nodes for their data transmission needs.

3.3 Hybrid Protocols

Hybrid protocols combine contention-based and scheduled-based approaches to achieve better performance. Examples include:

- **Z-MAC (Zebra MAC):** Adapts between TDMA and CSMA based on network conditions.
- **IEEE 802.11 DCF:** The Distributed Coordination Function employs a contention-based mechanism with optional RTS/CTS handshaking.

4. Performance Metrics

The performance of MAC protocols in MANETs is evaluated using the following metrics:

- **Throughput:** The total data successfully transmitted over the network.
- **Delay:** The time taken for a packet to traverse the network.
- **Fairness:** Equal access to the medium for all nodes.
- **Energy Efficiency:** Minimization of energy consumption for prolonged network operation.
- **Scalability:** The protocol's ability to perform well as the network size increases.

5. Challenges in Designing MAC Protocols for MANETs

- **Hidden and Exposed Terminal Problems:** Interference due to uncoordinated transmissions.
- **Mobility:** Rapid topology changes require adaptive protocols.
- **Energy Constraints:** Prolonged idle listening and collisions deplete battery life.
- **QoS Requirements:** Applications like VoIP demand low latency and high reliability.

6. Proposed Enhancements

To address the challenges, we propose the following enhancements:

- **Adaptive Protocols:** Protocols that adjust contention windows and backoff strategies based on network conditions.
- **Energy-Aware MAC (EA-MAC):** Incorporating sleep scheduling to conserve energy.
- **Cross-Layer Design:** Allowing interaction between the MAC layer and other layers (e.g., network or application layers) to improve performance.
- **Machine Learning Integration:** Using predictive models to optimize protocol parameters dynamically.

7. Conclusion

MAC protocols play a vital role in the efficient operation of MANETs. While existing protocols address many challenges, the dynamic nature of MANETs necessitates continuous innovation. Future research should focus on adaptive, energy-efficient, and intelligent protocols to meet the demands of emerging applications.

References

- [1] C. E. Perkins, E. M. Royer, "Ad hoc On-Demand Distance Vector Routing," in *Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications (WMCSA)*, 1999, pp. 90–100.
- [2] L. Bao, J. J. Garcia-Luna-Aceves, "A New Approach to Channel Access Scheduling for Ad Hoc Networks," in *Proceedings of the 7th Annual InternSational Conference on Mobile Computing and Networking (MobiCom)*, 2001, pp. 210–221.
- [3] IEEE 802.11 Working Group, "IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," 1999.
- [4] P. Karn, "MACA - A New Channel Access Method for Packet Radio," in *ARRL/CRRL Amateur Radio 9th Computer Networking Conference*, 1990, pp. 134–140.
- [5] R. Zheng, R. J. Kravets, "On-demand Power Management for Ad Hoc Networks," in *Proceedings of IEEE INFOCOM*, 2003, pp. 481–488.